Institut Nachhaltigkeit und Energie am Bau

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/10

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 6 von 6
  • Publikation
    Development and experimental evaluation of grey-box models of a microscale polygeneration system for application in optimal control
    (Elsevier, 2020) Sawant, Parantapa; Bürger, Adrian; Doan, Minh Dang; Felsmann, Clemens; Pfafferott, Jens
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Application and analysis of a model based controller for cooling towers in compression chiller plants
    (Elsevier, 2020) Sawant, Parantapa; Ho, Eric; Pfafferott, Jens
    Cooling towers or recoolers are one of the major consumers of electricity in a HVAC plant. The implementation and analysis of advanced control methods in a practical application and its comparison with conventional controllers is necessary to establish a framework for their feasibility especially in the field of decentralised energy systems. A standard industrial controller, a PID and a model based controller were developed and tested in an experimental set-up using market-ready components. The characteristics of these controllers such as settling time, control difference, and frequency of control actions are compared based on the monitoring data. Modern controllers demonstrated clear advantages in terms of energy savings and higher accuracy and a model based controller was easier to set-up than a PID.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Simulationsgestützte Systemauslegung für sorptionsgestützte, solare Kälteanlagen
    (VDI Fachmedien, 2022) Bürger, Adrian; Sawant, Parantapa; Wittstadt, Ursula; Altmann-Dieses, Angelika; Pfafferott, Jens
    Die fluktuierende Verfügbarkeit regenerativer Energiequellen stellt eine Herausforderung bei der Planung und Auslegung regenerativer Gebäudeenergiesysteme dar. Die in einem System benötigten Speicherkapazitäten hängen dabei sowohl von der eingesetzten Regelungsstrategie als auch von den temperaturabhängigen Wirkungsgraden der Anlagenkomponenten ab. Genauere Einblicke in das Betriebsverhalten eines Gesamtsystems können dynamische Simulationen liefern, die eine Analyse der Systemtemperaturen und von Teilenergiekennwerten ermöglichen.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Multiperspective analysis of microscale trigeneration systems and their role in the crowd energy concept
    (KeAi Publishing, 2015) Sawant, Parantapa; Meftah, Naim; Pfafferott, Jens
    The energy system of the future will transform from the current centralised fossil based to a decentralised, clean, highly efficient, and intelligent network. This transformation will require innovative technologies and ideas like trigeneration and the crowd energy concept to pave the way ahead. Even though trigeneration systems are extremely energy efficient and can play a vital role in the energy system, turning around their deployment is hindered by various barriers. These barriers are theoretically analysed in a multiperspective approach and the role decentralised trigeneration systems can play in the crowd energy concept is highlighted. It is derived from an initial literature research that a multiperspective (technological, energy-economic, and user) analysis is necessary for realising the potential of trigeneration systems in a decentralised grid. And to experimentally quantify these issues we are setting up a microscale trigeneration lab at our institute and the motivation for this lab is also briefly introduced.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Demonstration of optimal scheduling for a building heat pump system using eEconomic-MPC
    (MDPI, 2021) Sawant, Parantapa; Villegas Mier, Oscar; Schmidt, Michael; Pfafferott, Jens
    It is considered necessary to implement advanced controllers such as model predictive control (MPC) to utilize the technical flexibility of a building polygeneration system to support the rapidly expanding renewable electricity grid. These can handle multiple inputs and outputs, uncertainties in forecast data, and plant constraints, amongst other features. One of the main issues identified in the literature regarding deploying these controllers is the lack of experimental demonstrations using standard components and communication protocols. In this original work, the economic-MPC-based optimal scheduling of a real-world heat pump-based building energy plant is demonstrated, and its performance is evaluated against two conventional controllers. The demonstration includes the steps to integrate an optimization-based supervisory controller into a typical building automation and control system with off-the-shelf HVAC components and usage of state-of-art algorithms to solve a mixed integer quadratic problem. Technological benefits in terms of fewer constraint violations and a hardware-friendly operation with MPC were identified. Additionally, a strong dependency of the economic benefits on the type of load profile, system design and controller parameters was also identified. Future work for the quantification of these benefits, the application of machine learning algorithms, and the study of forecast deviations is also proposed.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Quasi-first-principle based grey-box modelling of microscale trigeneration systems for application in automatic control
    (Elsevier, 2018) Sawant, Parantapa; Pfafferott, Jens; Felsmann, Clemens
    With the need for automatic control based supervisory controllers for complex energy systems, comes the need for reduced order system models representing not only the non-linear behaviour of the components but also certain unknown process dynamics like their internal control logic. At the Institute of Energy Systems Technology in Offenburg we have built a real-life microscale trigeneration plant and present in this paper a rational modelling procedure that satisfies the necessary characteristics for models to be applied in model predictive control for grid-reactive optimal scheduling of this complex energy system. These models are validated against experimental data and the efficacy of the methodology is discussed. Their application in the future for the optimal scheduling problem is also briefly motivated.
    01A - Beitrag in wissenschaftlicher Zeitschrift