Hochschule für Life Sciences FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/22

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Vorschaubild
    Publikation
    Organic solvent free PbI2 recycling from perovskite solar cells using hot water
    (Elsevier, 05.04.2023) Schmidt, Felix; Amrein, Meret; Hedwig, Sebastian; Kober-Czerny, Manuel; Paracchino, Adriana; Holappa, Ville; Suhonen, Riikka; Schäffer, Andreas; Constable, Edwin C.; Snaith, Henry J.; Lenz, Markus
    Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies’ commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 – 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites’ end-of-life.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Environmental selenium volatilization is possibly conferred by promiscuous reactions of the sulfur metabolism
    (Elsevier, 2023) Liu, Ying; Schäffer, Andreas; Martinez, Mathieu; Lenz, Markus
    Selenium deficiency affects many million people worldwide and volatilization of biogenically methylated selenium species to the atmosphere may limit Se entering the food chain. However, there is very little systematic data on volatilization at nanomolar concentrations prevalent in pristine natural environments. Pseudomonas tolaasii cultures efficiently methylated Se at these concentrations. Nearly perfect linear correlations between the spiked Se concentrations and Dimethylselenide, Dimethyldiselenide, Dimethylselenylsulfide and 2-hydroxy-3-(methylselanyl)propanoic acid were observed up to 80 nM. The efficiency of methylation increased linearly with increasing initial Se concentration, arguing that the enzymes involved are not constitutive, but methylation proceeds promiscuously via pathways of S methylation. From the ratio of all methylated Se and S species, one can conclude that between 0.30% and 3.48% of atoms were Se promiscuously methylated at such low concentrations. At concentrations higher than 640 nM (∼50 μg/L) a steep increase in methylation and volatilization was observed, which suggested the induction of specific enzymes. Promiscuous methylation at low environmental concentrations calls into question that view that methylated Se in the atmosphere is a result of a purposeful Se metabolism serving detoxification. Rather, the concentrations of methylated Se in the atmosphere may be “coincidental” i.e., determined by the activity of S cycling microorganisms. Further, a steep increase in methylation efficiency when surpassing a certain threshold concentration (here ∼50 μg/L) calls into question that natural methylation can be estimated from high Se spikes in laboratory systems, yet highlights the possibility of using bacterial methylation as an effective remediation strategy for media higher concentrated in Se. © 2023 The Authors
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Rapid sequestration of perovskite solar cell-derived lead in soil
    (Elsevier, 08/2022) Schmidt, Felix; Ledermann, Luca; Schäffer, Andreas; Snaith, Henry J.; Lenz, Markus
    Efficient and stable perovskite solar cells rely on the use of Pb species potentially challenging the technologies’ commercialisation. In this study, the fate of Pb derived from two common perovskite precursors is compared to cationic lead in soil-water microcosm experiments under various biogeochemical conditions. The rapid and efficient removal of Pb from the aqueous phase is demonstrated by inductively coupled plasma mass spectrometry. Sequential soil extraction results reveal that a substantial amount of Pb is associated with immobile fractions, whereas a minor proportion of Pb may become available again in the long term, when oxygen is depleted (e.g. during water logging). X-ray absorption spectroscopy results reveal that the sorption of Pb on mineral phases represents the most likely sequestration mechanism. The obtained results suggest that the availability of leached Pb from perovskite solar cells is naturally limited in soils and that its adverse effects on soil biota are possibly negligible in oxic soils. All three Pb sources used behaved very similar in the experiments, wherefore we conclude that perovskite derived Pb will have a similar fate compared to cationic Pb, so that established risk assessment considerations for Pb remain legitimate.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Sulfur amino acid status controls selenium methylation in pseudomonas tolaasii. Identification of a novel metabolite from promiscuous enzyme reactions
    (American Society for Microbiology, 26.05.2021) Liu, Ying; Hedwig, Sebastian; Schäffer, Andreas; Lenz, Markus; Martinez, Mathieu
    Selenium (Se) deficiency affects many millions of people worldwide, and the volatilization of methylated Se species to the atmosphere may prevent Se from entering the food chain. Despite the extent of Se deficiency, little is known about fluxes in volatile Se species and their temporal and spatial variation in the environment, giving rise to uncertainty in atmospheric transport models. To systematically determine fluxes, one can rely on laboratory microcosm experiments to quantify Se volatilization in different conditions. Here, it is demonstrated that the sulfur (S) status of bacteria crucially determines the amount of Se volatilized. Solid-phase microextraction gas chromatography mass spectrometry showed that Pseudomonas tolaasii efficiently and rapidly (92% in 18 h) volatilized Se to dimethyl diselenide and dimethyl selenyl sulfide through promiscuous enzymatic reactions with the S metabolism. However, when the cells were supplemented with cystine (but not methionine), a major proportion of the Se (∼48%) was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of the previously formed dimethyl diselenide and dimethyl selenyl sulfide (accounting for <4% of total Se). Ion chromatography and solid-phase extraction were used to isolate unknowns, and electrospray ionization ion trap mass spectrometry, electrospray ionization quadrupole time-of-flight mass spectrometry, and microprobe nuclear magnetic resonance spectrometry were used to identify the major unknown as a novel Se metabolite, 2-hydroxy-3-(methylselanyl)propanoic acid. Environmental S concentrations often exceed Se concentrations by orders of magnitude. This suggests that in fact S status may be a major control of selenium fluxes to the atmosphere. IMPORTANCE Volatilization from soil to the atmosphere is a major driver for Se deficiency. “Bottom-up” models for atmospheric Se transport are based on laboratory experiments quantifying volatile Se compounds. The high Se and low S concentrations in such studies poorly represent the environment. Here, we show that S amino acid status has in fact a decisive effect on the production of volatile Se species in Pseudomonas tolaasii. When the strain was supplemented with S amino acids, a major proportion of the Se was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of volatile compounds. This hierarchical control of the microbial S amino acid status on Se cycling has been thus far neglected. Understanding these interactions—if they occur in the environment—will help to improve atmospheric Se models and thus predict drivers of Se deficiency.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Redox-stat bioreactors for elucidating mobilisation mechanisms of trace elements: An example of As-contaminated mining soils
    (Springer, 2018) Rajpert, Liwia; Schäffer, Andreas; Lenz, Markus
    The environmental fate of major (e.g. C, N, S, Fe and Mn) and trace (e.g. As, Cr, Sb, Se and U) elements is governed by microbially catalysed reduction-oxidation (redox) reactions. Mesocosms are routinely used to elucidate trace metal fate on the basis of correlations between biogeochemical proxies such as dissolved element concentrations, trace element speciation and dissolved organic matter. However, several redox processes may proceed simultaneously in natural soils and sediments (particularly, reductive Mn and Fe dissolution and metal/metalloid reduction), having a contrasting effect on element mobility. Here, a novel redox-stat (Rcont) bioreactor allowed precise control of the redox potential (159 ± 11 mV, ~ 2 months), suppressing redox reactions thermodynamically favoured at lower redox potential (i.e. reductive mobilisation of Fe and As). For a historically contaminated mining soil, As release could be attributed to desorption of arsenite [As(III)] and Mn reductive dissolution. By contrast, the control bioreactor (Rnat, with naturally developing redox potential) showed almost double As release (337 vs. 181 μg g−1) due to reductive dissolution of Fe (1363 μg g−1 Fe2+ released; no Fe2+ detected in Rcont) and microbial arsenate [As(V)] reduction (189 μg g−1 released vs. 46 μg g−1 As(III) in Rcont). A redox-stat bioreactor thus represents a versatile tool to study processes underlying mobilisation and sequestration of other trace elements as well.
    01A - Beitrag in wissenschaftlicher Zeitschrift