Listen
23 Ergebnisse
Bereich: Suchergebnisse
Publikation Development and validation of a liquid chromatography-triple quadrupole mass spectrometry method for the determination of isopeptide ε-(γ-glutamyl) lysine in human urine as biomarker for transglutaminase 2 cross-linked proteins(Elsevier, 21.06.2023) Dejager, Lien; Jairaj, Mark; Jones, Kieran; Johnson, Timothy; Dudal, Sherri; Dudal, Yves; Shahgaldian, Patrick; Correro, Rita; Qu, Jun; An, Bo; Lucey, Richard; Szarka, Szabolcs; Wheller, Robert; Pruna, Alina; Kettell, Sarah; Pitt, Andrew; Cutler, Paul01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Immobilisation and stabilisation of glycosylated enzymes on boronic acid-functionalised silica nanoparticles(Royal Society of Chemistry, 2021) Nazemi, Seyed; Olesinska, Magdalena; Pezzella, Cinzia; Varriale, Simona; Lin, Chia-Wei; Corvini, Philippe; Shahgaldian, PatrickWe report a method of glycosylated enzymes’ surface immobilisation and stabilisation. The enzyme is immobilised at the surface of silica nanoparticles through the reversible covalent binding of vicinal diols of the enzyme glycans with a surface-attached boronate derivative. A soft organosilica layer of controlled thickness is grown at the silica surface, entrapping the enzyme and thus avoiding enzyme leaching. We demonstrate that this approach results not only in high and durable activity retention but also enzyme stabilisation.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Coordination-driven monolayer-to-bilayer transition in two-dimensional metal–organic networks(American Chemical Society, 16.03.2021) Moradi, Mina; Lengweiler, Nadia; Housecroft, Catherine; Tulli, Ludovico; Stahlberg, Henning; Jung, Thomas; Shahgaldian, PatrickWe report on monolayer-to-bilayer transitions in 2D metal–organic networks (MONs) from amphiphiles supported at the water–air interface. Functionalized calix[4]arenes are assembled through the coordination of selected transition metal ions to yield monomolecular 2D crystalline layers. In the presence of Ni(II) ions, interfacial self-assembly and coordination yields stable monolayers. Cu(II) promotes 2D coordination of a monolayer which is then diffusively reorganizing, nucleates, and grows a progressive amount of second layer islands. Atomic force microscopic data of these layers after transfer onto solid substrates reveal crystalline packing geometries with submolecular resolution as they are varying in function of the building blocks and the kinetics of the assembly. We assign this monolayer-to-bilayer transition to a diffusive reorganization of the initial monolayers owing to chemical vacancies of the predominant coordination motif formed by Cu2+ ions. Our results introduce a new dimension into the controlled monolayer-to-multilayer architecturing of 2D metal–organic networks.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Spectrophotometric study of the interaction of active pharmaceutical ingredients with colloidal silver nanoparticles capped by sulfonato-calix[6]arene derivatives(Taylor & Francis, 13.02.2021) Montasser, Imed; Robert, Paul; Hafiane, Amor; Correro, Maria Rita; Shahgaldian, PatrickThree sulfonato-calix[6]arene derivatives, namely para-sulfonato-calix[6]arene, calix[6]arene-O-propyl-3-sulphonate and para-sulfonato-calix[6]arene-O-propyl-3-sulphonate have been used as capping agents for silver nanoparticles. The sulfonato-calix[6]arene derivatives were demonstrated to stabilise the nanoparticles, and to act as ligands for molecular recognition at the surface of the nanoparticles. The nanoparticles were characterised by UV-visible spectroscopy, dynamic light scattering, zeta potential and scanning electron microscopy. The localised surface plasmon resonance of the nanoparticles was shown to be highly sensitive to the local environment, and was used to evaluate molecular interactions with four active pharmaceutical ingredients: streptomycin, gentamycin, D-penicillamine and chloramphenicol. Changes in spectral intensity and wavelength have shown that the interactions are dependent on both the nature of the active pharmaceutical ingredient and that of the calix[6]arene receptor.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Hydrophobicity-responsive engineered mesoporous silica nanoparticles: application in the delivery of essential nutrients to bacteria combating oil spills(Royal Society of Chemistry, 06/2019) Corvini, Nora; Corvini, Philippe; Shahgaldian, Patrick; El Idrissi, Mohamed; Dimitriadou, EleniFacile chemical modification of mesoporous silica particles allows the production of gated reservoir systems capable of hydrophobicity-triggered release. Applied to the delivery of nutrients specifically to an oil phase, the systems developed have been shown to reliably assist the bacterial degradation of hydrocarbons. The gated system developed, made of C18 hydrocarbon chains, is demonstrated to be in a closed collapsed state in an aqueous environment, yet opens up through solvation by lipophilic alkanes and releases its content on contact with the oil phase.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Decoding the ocean's microbiological secrets for marine enzyme biodiscovery(Oxford University Press, 2019) Ferrer, Manuela; Shahgaldian, PatrickA global census of marine microbial life has been underway over the past several decades. During this period, there have been scientific breakthroughs in estimating microbial diversity and understanding microbial functioning and ecology. It is estimated that the ocean, covering 71% of the earth's surface with its estimated volume of about 2 × 1018 m3 and an average depth of 3800 m, hosts the largest population of microbes on Earth. More than 2 million eukaryotic and prokaryotic species are thought to thrive both in the ocean and on its surface. Prokaryotic cell abundances can reach densities of up to 1012 cells per millilitre, exceeding eukaryotic densities of around 106 cells per millilitre of seawater. Besides their large numbers and abundance, marine microbial assemblages and their organic catalysts (enzymes) have a largely underestimated value for their use in the development of industrial products and processes. In this perspective article, we identified critical gaps in knowledge and technology to fast-track this development. We provided a general overview of the presumptive microbial assemblages in oceans, and an estimation of what is known and the enzymes that have been currently retrieved. We also discussed recent advances made in this area by the collaborative European Horizon 2020 project 'INMARE'.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Surface Immobilization and Shielding of a Transaminase Enzyme for the Stereoselective Synthesis of Pharmaceutically Relevant Building Blocks(Schweizerische Chemische Gesellschaft, 05/2018) Alami, Ayoub Talbi; Richina, Frederica; Hernandez, Maria; Dudal, Yves; Shahgaldian, PatrickTransaminases are enzymes capable of stereoselective reductive amination; they are of great interest in the production of chiral building blocks. However, the use of this class of enzymes in industrial processes is often hindered by their limited stability under operational conditions. Herein, we demonstrate that a transaminase enzyme from Aspergillus terreus can be immobilized at the surface of silica nanoparticles and protected in an organosilica shell of controlled thickness. The so-protected enzyme displays a high biocatalytic activity, and additionally provides the possibility to be retained in a reactor system for continuous operation and to be recycled.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A Two‐Dimensional Polymer Synthesized at the Air/Water Interface(Wiley, 06/2018) Müller, Vivian; Hinaut, Antoine; Moradi, Mina; Jung, Thomas A.; Shahgaldian, Patrick; Möhwald, Helmuth; Hofer, Greogor; Kröger, Martin; King, Benjamin T.; Meyer, Ernst; Glatzel, Thilo; Schlüter, Dieter A.; Baljozovic, MilosA trifunctional, partially fluorinated anthracene‐substituted triptycene monomer was spread at an air/water interface into a monolayer, which was transformed into a long‐range‐ordered 2D polymer by irradiation with a standard UV lamp. The polymer was analyzed by Brewster angle microscopy, scanning tunneling microscopy measurements, and non‐contact atomic force microscopy, which confirmed the generation of a network structure with lattice parameters that are virtually identical to a structural model network based on X‐ray diffractometry of a closely related 2D polymer. The nc‐AFM images highlight the long‐range order over areas of at least 300×300 nm2. As required for a 2D polymer, the pore sizes are monodisperse, except for the regions where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross‐links in this network, the structural information provided herein leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Template-free hierarchical self-assembly of a pyrene derivative into supramolecular nanorods(Payame Noor University, 2017) El Idrissi, Mohamed; Teat, Simon J.; Corvini, Philippe; Paterson, Martin J.; Dalgarno, Scott J.; Shahgaldian, PatrickThe accurate molecular design of organic building blocks is of great importance for the creation of large supramolecular entities with precise dimensional organisation. Herein we report on the design of a new pyrene derivative that yields, through a hierarchical self-assembly process and in the absence of template, stable and well defined nanorods. X-ray diffraction studies allowed elucidation of the three dimensional packing of this pyrene derivative within the self-assembled nanorods.01A - Beitrag in wissenschaftlicher Zeitschrift
- «
- 1 (current)
- 2
- 3
- »