Miho, Enkelejda

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Miho
Vorname
Enkelejda
Name
Miho, Enkelejda

Suchergebnisse

Gerade angezeigt 1 - 10 von 30
Lade...
Vorschaubild
Publikation

Kidins220 regulates the development of B cells bearing the λ light chain

2024-01-25, Schaffer, Anna-Maria, Fiala, Gina Jasmin, Hils, Miriam, Natali, Eriberto, Babrak, Lmar, Herr, Laurenz Alexander, Romero-Mulero, Mari Carmen, Cabezas-Wallscheid, Nina, Rizzi, Marta, Miho, Enkelejda, Schamel, Wolfgang W.A., Minguet, Susana

The ratio between κ and λ light chain (LC)-expressing B cells varies considerably between species. We recently identified Kinase D-interacting substrate of 220 kDa (Kidins220) as an interaction partner of the BCR. In vivo ablation of Kidins220 in B cells resulted in a marked reduction of λLC-expressing B cells. Kidins220 knockout B cells fail to open and recombine the genes of the Igl locus, even in genetic scenarios where the Igk genes cannot be rearranged or where the κLC confers autoreactivity. Igk gene recombination and expression in Kidins220-deficient B cells is normal. Kidins220 regulates the development of λLC B cells by enhancing the survival of developing B cells and thereby extending the time-window in which the Igl locus opens and the genes are rearranged and transcribed. Further, our data suggest that Kidins220 guarantees optimal pre-BCR and BCR signaling to induce Igl locus opening and gene recombination during B cell development and receptor editing.

Vorschaubild nicht verfügbar
Publikation

Unconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity prediction

2022-12-19, Robert, Philippe A., Akbar, Rahmad, Frank, Robert, Pavlović, Milena, Widrich, Michael, Snapkov, Igor, Slabodkin, Andrei, Chernigovskaya, Maria, Scheffer, Lonneke, Smorodina, Eva, Rawat, Puneet, Mehta, Brij Bhushan, Vu, Mai Ha, Mathisen, Ingvild Frøberg, Prósz, Aurél, Abram, Krzysztof, Olar, Alex, Miho, Enkelejda, Haug, Dag Trygve Tryslew, Lund-Johansen, Fridtjof, Hochreiter, Sepp, Haff, Ingrid Hobæk, Klambauer, Günter, Sandve, Geir Kjetil, Greiff, Victor

Machine learning (ML) is a key technology for accurate prediction of antibody–antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody–antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.

Vorschaubild nicht verfügbar
Publikation

Sequencing of the M protein. Toward personalized medicine in monoclonal gammopathies

2022-08-23, Cascino, Pasquale, Nevone, Alice, Piscitelli, Maggie, Scopelliti, Claudia, Girelli, Maria, Mazzini, Giulia, Caminito, Serena, Russo, Giancarlo, Milani, Paolo, Basset, Marco, Foli, Andrea, Fazio, Francesca, Casarini, Simona, Massa, Margherita, Bozzola, Margherita, Ripepi, Jessica, Sesta, Melania Antonietta, Acquafredda, Gloria, De Cicco, Marica, Moretta, Antonia, Rognoni, Paola, Milan, Enrico, Ricagno, Stefano, Lavatelli, Francesca, Petrucci, Maria Teresa, Klersy, Catherine, Merlini, Giampaolo, Palladini, Giovanni, Nuvolone, Mario, Miho, Enkelejda

Each patient with a monoclonal gammopathy has a unique monoclonal (M) protein, whose sequence can be used as a tumoral fingerprint to track the presence of the B cell or plasma cell (PC) clone itself. Moreover, the M protein can directly cause potentially life-threatening organ damage, which is dictated by the specific, patient's unique clonal light and/or heavy chain amino acid sequence, as in patients affected by immunoglobulin light chain (AL) amyloidosis.1 However, patients' specific M protein sequences remain mostly undefined and molecular mechanisms underlying M protein-related clinical manifestations are largely obscure.

Lade...
Vorschaubild
Publikation

RWD-Cockpit: application for quality assessment of real-world data

2022, Babrak, Lmar, Smakaj, Erand, Agac, Teyfik, Asprion, Petra, Grimberg, Frank, Van der Werf, Daan, van Ginkel, Erwin Willem, Tosoni, Deniz David, Clay, Ieuan, Degen, Markus, Brodbeck, Dominique, Natali, Eriberto Noel, Schkommodau, Erik, Miho, Enkelejda

Background: Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence. Objective: To address the need to qualify RWD, we aimed to build a web application as a tool to translate characterization of some quality parameters of RWD into a metric and propose a standard framework for evaluating the quality of the RWD. Methods: The RWD-Cockpit systematically scores data sets based on proposed quality metrics and customizable variables chosen by the user. Sleep RWD generated de novo and publicly available data sets were used to validate the usability and applicability of the web application. The RWD quality score is based on the evaluation of 7 variables: manageability specifies access and publication status; complexity defines univariate, multivariate, and longitudinal data; sample size indicates the size of the sample or samples; privacy and liability stipulates privacy rules; accessibility specifies how the data set can be accessed and to what granularity; periodicity specifies how often the data set is updated; and standardization specifies whether the data set adheres to any specific technical or metadata standard. These variables are associated with several descriptors that define specific characteristics of the data set. Results: To address the need to qualify RWD, we built the RWD-Cockpit web application, which proposes a framework and applies a common standard for a preliminary evaluation of RWD quality across data sets—molecular, phenotypical, and social—and proposes a standard that can be further personalized by the community retaining an internal standard. Applied to 2 different case studies—de novo–generated sleep data and publicly available data sets—the RWD-Cockpit could identify and provide researchers with variables that might increase quality Conclusions: The results from the application of the framework of RWD metrics implemented in the RWD-Cockpit application suggests that multiple data sets can be preliminarily evaluated in terms of quality using the proposed metrics. The output scores—quality identifiers—provide a first quality assessment for the use of RWD. Although extensive challenges remain to be addressed to set RWD quality standards, our proposal can serve as an initial blueprint for community efforts in the characterization of RWD quality for regulated settings.

Lade...
Vorschaubild
Publikation

The dengue-specific immune response and antibody identification with machine learning

2024-01-20, Natali, Eriberto Noel, Horst, Alexander, Meier, Patrick, Greiff, Victor, Nuvolone, Mario, Babrak, Lmar Marie, Fink, Katja, Miho, Enkelejda

Dengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.

Vorschaubild nicht verfügbar
Publikation

Unconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity prediction

2022-12-19, Robert, Philippe A., Akbar, Rahmad, Pavlović, Milena, Widrich, Michael, Snapkov, Igor, Slabodkin, Andrei, Chernigovskaya, Maria, Scheffer, Lonneke, Smorodina, Eva, Rawat, Puneet, Mehta, Brij Bhushan, Vu, Mai Ha, Mathisen, Ingvild Frøberg, Prósz, Aurél, Abram, Krzysztof, Olar, Axel, Miho, Enkelejda, Haug, Dag Trygve Tryslew, Lund-Johansen, Fridtjof, Hochreiter, Sepp, Hobæk Haff, Ingrid, Klambauer, Günter, Sandve, Geir Kjetil, Greiff, Victor

Machine learning (ML) is a key technology for accurate prediction of antibody–antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody–antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.

Vorschaubild nicht verfügbar
Publikation

Single-molecule real-time sequencing of the M protein.Toward personalized medicine in monoclonal gammopathies

2022-08-05, Cascino, Pasquale, Nevone, Alice, Piscitelli, Maggie, Scopelliti, Claudia, Girelli, Maria, Mazzini, Giulia, Caminito, Serena, Russo, Giancarlo, Milani, Paolo, Basset, Marco, Foli, Andrea, Fazio, Francesca, Casarini, Simona, Massa, Margherita, Bozzola, Margherita, Ripepi, Jessica, Sesta, Melania Antonietta, Acquafredda, Gloria, De Cicco, Marica, Moretta, Antonia, Rognoni, Paola, Milan, Enrico, Ricagno, Stefano, Lavatelli, Francesca, Petrucci, Maria Teresa, Miho, Enkelejda, Klersy, Catherine, Merlini, Giampaolo, Palladini, Giovanni, Nuvolone, Mario

Lade...
Vorschaubild
Publikation

Author Correction. The dengue-specific immune response and antibody identification with machine learning

2024-01-20, Natali, Eriberto Noel, Horst, Alexander, Meier, Patrick, Greiff, Victor, Nuvolone, Mario, Babrak, Lmar Marie, Fink, Katja, Miho, Enkelejda

Dengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.

Lade...
Vorschaubild
Publikation

RWD-Cockpit. Application for quality assessment of real-world data

2022-10-18, Degen, Markus, Babrak, Lmar, Smakaj, Erand, Agac, Teyfik, Asprion, Petra, Grimberg, Frank, Van der Werf, Daan, Van Ginkel, Erwin Willem, Tosoni, Deniz David, Clay, Ieuan, Brodbeck, Dominique, Natali, Eriberto, Schkommodau, Erik, Miho, Enkelejda

Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence.

Lade...
Vorschaubild
Publikation

In silico proof of principle of machine learning-based antibody design at unconstrained scale

2022-04-04, Akbar, Rahmad, Robert, Philippe A., Weber, Cédric R., Widrich, Michael, Frank, Robert, Pavlović, Milena, Scheffer, Lonneke, Chernigovskaya, Maria, Snapkov, Igor, Slabodkin, Andrei, Mehta, Brij Bhushan, Miho, Enkelejda, Lund-Johansen, Fridtjof, Andersen, Jan Terje, Hochreiter, Sepp, Hobæk Haff, Ingrid, Klambauer, Günter, Sandve, Geir Kjetil, Greiff, Victor

Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.