A hybrid intelligent approach combining machine learning and a knowledge graph to support academic journal publishers addressing the Reviewer Assignment Problem (RAP)
Dateien
Autor:in (Körperschaft)
Publikationsdatum
2023
Typ der Arbeit
Studiengang
Typ
04B - Beitrag Konferenzschrift
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023)
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
1-19
Patentnummer
Verlag / Herausgebende Institution
Sun SITE, Informatik V, RWTH Aachen
Verlagsort / Veranstaltungsort
Aachen
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
This paper presents a hybrid intelligent approach that combines natural language processing (NLP) and knowledge engineering to address the Reviewer Assignment Problem (RAP) in scientific peer-review. The approach uses NLP techniques to match a new document with subject experts, and it employs a knowledge graph to identify conflicts of interest (COIs) between the authors of a document and potential reviewers. The approach detects three types of COIs: direct co-authorship, second-level coauthorship, and collaborators from the same institutions. Further, it uses semantic text similarity (STS) matching for peer-reviewing of documents in journals, where potential reviewers are screened from large literature databases. The research approach follows the Design Science Research methodology, where a prototypical system is designed based on the requirements elicited from both the literature and from primary data collection conducted in a publishing house. The approach is evaluated by implementing real-world use cases in the working prototype and by conducting a focus group with potential users, i.e., editors. © 2023 CEUR-WS. All rights reserved.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Diamond
Zitation
RORDORF, Dietrich Hans-Paul, Josua KÄSER, Alfredo Etienne CREGO COROT und Emanuele LAURENZI, 2023. A hybrid intelligent approach combining machine learning and a knowledge graph to support academic journal publishers addressing the Reviewer Assignment Problem (RAP). In: Andreas MARTIN, Hans-Georg FILL, Aurona GERBER, Knut HINKELMANN, Doug LENAT, Reinhard STOLLE und Frank HARMELEN (Hrsg.), Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023). Aachen: Sun SITE, Informatik V, RWTH Aachen. 2023. S. 1–19. Verfügbar unter: https://doi.org/10.26041/fhnw-11149