Methodenentwicklung und Optimierung der METAS-Radonkammer zur Herstellung von feldtypischen Messparametern

Vorschaubild
Autor:in (Körperschaft)
Publikationsdatum
06.08.2024
Typ der Arbeit
Studiengang
Typ
05 - Forschungs- oder Arbeitsbericht
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Institut Nachhaltigkeit und Energie am Bau, Hochschule für Architektur, Bau und Geomatik FHNW
Verlagsort / Veranstaltungsort
Muttenz
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Gemäss Schweizer Recht müssen Radonmessgeräte und Radondosimeter zugelassen werden. Dazu wird die Radonkammer des Eidgenössischen Instituts für Metrologie (METAS) genutzt. Die Radonkammer ermöglicht das Erzeugen einer Referenzkonzentration, die auf Primärstandards rückverfolgbar ist. Dabei konnten die Parameter der Luft, also Temperatur, Luftfeuchtigkeit und Luftdruck nicht gesteuert werden und lagen nur bedingt bei Werten, wie sie bei einer Radonmessung zu erwarten sind. Besonders radonexponierte Arbeitsplätze können eine grosse Bandbreite an Temperaturen und Luftfeuchtigkeiten aufweisen, ebenso können Messungen in grosser Höhe bei deutlich geringerem Druck stattfinden als solche im Schweizer Mittelland. Damit stellt sich die Frage, ob und wie stark die Messgenauigkeit von Radonmessgeräten und Radondosimetern von den Parametern der Luft abhängt. Aus diesem Grund war es notwendig die Radonkammer des METAS anzupassen, sodass die Temperatur, Luftfeuchtigkeit und der Luftdruck gesteuert werden können. Die Steuerung der Temperatur wurde über einen Wärmetauscher umgesetzt, der eine Flüssigkeit heizt oder kühlt. Diese Flüssigkeit umströmt die Hülle der Kammer in Schläuchen und überträgt so die Wärme. Mit einem Regelalgorithmus wird so die gewünschte Temperatur in der Kammer gehalten. Die Steuerung der Luftfeuchtigkeit funktioniert mit einem Ultraschallvernebler. Dieser wird elektrisch angesteuert und so die relative Luftfeuchtigkeit auf dem Zielwert stabilisiert. Eine Steuerung für den Luftdruck in der Kammer wurde zum jetzigen Zeitpunkt noch nicht umgesetzt. In einer Testmessung wurden die Funktion der Steuerungen verifiziert. Bei Temperaturen von 5 °C, 20 °C und 40 °C und relativen Luftfeuchtigkeiten von 30%, 50% und 85% wurde eine Radonkonzentration von 400 Bq/m3 mit einem Luftvolumenstrom von 5.5 L/min erzeugt. Die Messungen zeigten, dass der Mittelwert der Temperatur nur in einer Messreihe um 0.01 °C von der Zieltemperatur abwich. Die Standardabweichungen der Temperatur betrugen maximal 0.05 °C. Bei der Luftfeuchtigkeit wurde mit 29.6% die grösste Abweichung des Mittelwertes vom Zielwert von 30% gemessen. Die Standardabweichungen der Messreihen betrugen maximal 1.1% relative Luftfeuchtigkeit. Damit wurde gezeigt, dass die Zielwerte für Temperatur und Luftfeuchtigkeit genau erreicht und über Messreihen von sechs Stunden stabil gehalten werden können. Abschliessend ist es weiterhin interessant eine Steuerung des Luftdrucks in der Messkammer zu realisieren, damit auch dieser Parameter kontrolliert werden kann. Anhand dieser Optimierungen können nun Messgeräte geprüft und Datengrundlagen geschaffen werden.
Schlagwörter
Radon, Radonmessgerät, Radondosimeter, Radonkammer
Fachgebiet (DDC)
600 - Technik, Medizin, angewandte Wissenschaften
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Deutsch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Unveröffentlicht
Begutachtung
Keine Begutachtung
Open Access-Status
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
GRAPENTIN, Raphael, 2024. Methodenentwicklung und Optimierung der METAS-Radonkammer zur Herstellung von feldtypischen Messparametern. Muttenz: Institut Nachhaltigkeit und Energie am Bau, Hochschule für Architektur, Bau und Geomatik FHNW. Verfügbar unter: https://doi.org/10.26041/fhnw-9972