Influence of statistical approaches on Probabilistic Sweet Spots computation in Deep Brain Stimulation for severe Essential Tremor

Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
NeuroImage: Clinical
Themenheft
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
47
Ausgabe / Nummer
Seiten / Dauer
103820
Patentnummer
Verlag / Herausgebende Institution
Elsevier
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Deep Brain Stimulation (DBS) is an established therapy for movement and neuropsychiatric disorders. Identifying brain regions (Probabilistic Sweet Spots, PSS) linked with the greatest symptom improvement is crucial for refining pre-operative targeting and post-operative programming. Probabilistic stimulation mapping is a powerful data-driven tool to delineate these regions. However, the chosen statistical methods can influence the identified PSS. A comprehensive evaluation of their impact is lacking in DBS research. The present study compares the PSS generated with four voxel-wise statistical approaches — t-test, Wilcoxon test, Linear Mixed Model, and Bayesian t-test — with the aim of assessing their influence on computed results on the same dataset. Intra-operative stimulation test data of 23 Essential Tremor (ET) patients was used to run patient-specific electric field simulations and to generate PSS in a group-specific anatomical template space. The PSS for the different statistical tests were first compared in terms of size and topography. Then, their correlation with clinical improvement was calculated in a leave-one-out cross-validation scheme and PSS consistency across datasets with different compositions was assessed. Our findings emphasize the impact of statistical test selection on both the anatomical location and volume of the extracted PSS, highlighting the importance of careful methodological choices in future DBS mapping studies. The Bayesian t-test and a voxel-wise application of nonparametric permutation testing, introduced for the first time in DBS research, showed promising results in identifying PSS representative of improvement and exhibited robustness to variations in the dataset.
Schlagwörter
Deep brain stimulation (DBS), Essential tremor, Probabilistic mapping, Probabilistic sweet spot, Statistical methods
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
2213-1582
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
Bucciarelli, V., Vogel, D., Nordin, T., Stawiski, M., Coste, J., Lemaire, J.-J., Guzman, R., & Hemm-Ode, S. (2025). Influence of statistical approaches on Probabilistic Sweet Spots computation in Deep Brain Stimulation for severe Essential Tremor. NeuroImage: Clinical, 47, 103820. https://doi.org/10.1016/j.nicl.2025.103820