Propensity matters. An empirical analysis on the importance of trust for the intention to use artificial intelligence
Lade...
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2025
Typ der Arbeit
Studiengang
Typ
04B - Beitrag Konferenzschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Proceedings of the 15th International Conference on Human Interaction & Emerging Technologies (IHIET 2025) August 25-27, 2025 University of Vienna, Austria
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
AHFE International
Reihennummer
197
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
171-181
Patentnummer
Verlag / Herausgebende Institution
AHFE Open Access
Verlagsort / Veranstaltungsort
New York
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
There is a growing need for scientific knowledge about the extent to which the results of artificial intelligence (AI) and the effects of its use can be considered trustworthy. Accordingly, user experience can lead to trust in AI being too low or too high, which could result in its misuse. Especially as trust is considered subjective and could be seen as a heuristic, which in turn would speak in favor of the importance of trust in AI, as the underlying algorithm is not transparent to the user in so-called black-box models. In this context, the call to enhance the transparency of such models to increase trust seems contradictory. There is no common theory, but Lee and See's (2004) model of trust in automation is often used as a basis for research, since automation can be seen as the foundation of AI. However, it remains unclear whether this model can be adapted to AI. Therefore, this study investigates which factors influence trust in AI in the context of ChatGPT and how this affects the intention to use. On this basis, a conceptual path model was derived and tested using path analysis. Data were collected from 105 students using validated questionnaires. The empirical path model shows the expected positive influences, with one exception. In addition, the results emphasize that the role of the propensity to trust is central. Furthermore, the significant influence of trust on intention to use is weaker than supposed. While the results largely align with existing assumptions, they simultaneously introduce new insights.
Schlagwörter
Fachgebiet (DDC)
Veranstaltung
Human Interaction and Emerging Technologies (IHIET 2025)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
25.08.2025
Enddatum der Konferenz
27.08.2025
Datum der letzten Prüfung
ISBN
978-1-964867-73-1
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Zitation
Karg, J., Ritz, F., & Asprion, P. (2025). Propensity matters. An empirical analysis on the importance of trust for the intention to use artificial intelligence. In T. Z. Ahram & R. Motschnig (Eds.), Proceedings of the 15th International Conference on Human Interaction & Emerging Technologies (IHIET 2025) August 25-27, 2025 University of Vienna, Austria (pp. 171–181). AHFE Open Access. https://doi.org/10.54941/ahfe1006710