lnstitut für Sensorik und Elektronik
Dauerhafte URI für die Sammlung
Listen
Auflistung lnstitut für Sensorik und Elektronik nach Erscheinungsdatum
Gerade angezeigt 1 - 20 von 290
Treffer pro Seite
Sortieroptionen
- PublikationAir cleaners and respiratory infections in schools. A modeling study using epidemiological, environmental, and molecular data(Oxford University Press, 30.12.2023) Banholzer, Nicolas; Jent, Philipp; Bittel, Pascal; Zürcher, Kathrin; Furrer, Lavinia; Bertschinger, Simon; Weingartner, Ernest; Ramette, Alban; Egger, Matthias; Hascher, Tina; Fenner, Lukas [in: Open Forum Infectious Diseases]AbstractBackgroundUsing a multiple-measurement approach, we examined the real-world effectiveness of portable HEPA-air filtration devices (air cleaners) in a school setting.MethodsWe collected environmental (CO2, particle concentrations), epidemiological (absences related to respiratory infections), audio (coughing), and molecular data (bioaerosol and saliva samples) over seven weeks during winter 2022/2023 in two Swiss secondary school classes. Using a cross-over study design, we compared particle concentrations, coughing, and the risk of infection with vs without air cleaners.ResultsAll 38 students (age 13−15 years) participated. With air cleaners, mean particle con-centration decreased by 77% (95% credible interval 63%−86%). There were no differences in CO2levels. Absences related to respiratory infections were 22 without vs 13 with air cleaners. Bayesian modeling suggested a reduced risk of infection, with a posterior probability of 91% and a relative risk of 0.73 (95% credible interval 0.44−1.18). Coughing also tended to be less frequent (posterior probability 93%). Molecular analysis detected mainly non-SARS-CoV-2 viruses in saliva (50/448 positive), but not in bioaerosols (2/105 positive) or HEPA-filters (4/160). The detection rate was similar with vs without air cleaners. Spatiotemporal analysis of positive saliva samples identified several likely transmissions.ConclusionsAir cleaners improved air quality, showed a potential benefit in reducing respiratory infections, and were associated with less coughing. Airborne detection of non-SARS-CoV-2 viruses was rare, suggesting that these viruses may be more difficult to detect in the air. Future studies should examine the importance of close contact and long-range transmission, and the cost-effectiveness of using air cleaners.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationA novel measurement system for unattended, in situ characterization of carbonaceous aerosols(Copernicus, 22.12.2023) Keller, Alejandro; Specht, Patrick; Steigmeier, Peter; Weingartner, Ernest [in: Aerosol Research]Carbonaceous aerosol is a relevant constituent of the atmosphere in terms of climate and health impacts. Nevertheless, measuring this component poses many challenges. There is currently no simple and sensitive commercial technique that can reliably capture its totality in an unattended manner, with minimal user intervention, for extended periods of time. To address this issue we have developed the fast thermal carbon totalizator (FATCAT). Our system captures an aerosol sample on a rigid metallic filter and subsequently analyses it by rapidly heating the filter directly, through induction, to a temperature around 800°C. The carbon in the filter is oxidized and quantified as CO2 in order to establish the total carbon (TC) content of the sample. The metallic filter is robust, which solves filter displacement or leakage problems, and does not require a frequent replacement like other measurement techniques. The limit of detection of our system using the 3σ criterion is TC =0.19 µg-C (micrograms of carbon). This translates to an average ambient concentration of TC =0.32 µg-C m^−3 and TC =0.16 µg-C m^−3 for sampling interval of 1 or 2 h respectively using a sampling flow rate of 10 L min^−1. We present a series of measurements using a controlled, well-defined propane flame aerosol as well as wood-burning emissions using two different wood-burning stoves. Furthermore, we complement these measurements by coating the particles with secondary organic matter by means of an oxidation flow reactor. Our device shows a good correlation (correlation coefficient, R^2>0.99) with well-established techniques, like mass measurements by means of a tapered element oscillating microbalance and TC measurements by means of thermal–optical transmittance analysis. Furthermore, the homogeneous fast-heating of the filter produces fast thermograms. This is a new feature that, to our knowledge, is exclusive of our system. The fast thermograms contain information regarding the volatility and refractoriness of the sample without imposing an artificial fraction separation like other measurement methods. Different aerosol components, like wood-burning emissions, soot from the propane flame and secondary organic matter, create diverse identifiable patterns.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationQuantum logical controlled-NOT gate in a lithium niobate-on-insulator photonic quantum walk(Institute of Physics Publishing, 17.11.2023) Chapman, Robert J; Häusler, Samuel; Finco, Giovanni; Kaufmann, Fabian; Grange, Rachel [in: Quantum Science and Technology]The two-qubit controlled-NOT gate is one of the central entangling operations in quantum information technology. The controlled-NOT gate for single photon qubits is normally realized as a network of five individual beamsplitters on six optical modes. Quantum walks (QWs) are an alternative photonic architecture involving arrays of coupled waveguides, which have been successful for investigating condensed matter physics, however, have not yet been applied to quantum logical operations. Here, we engineer the tight-binding Hamiltonian of an array of lithium niobate-on-insulator waveguides to experimentally demonstrate the two-qubit controlled-NOT gate in a QW. We measure the two-qubit transfer matrix with 0.938 ± 0.003 fidelity, and we use the gate to generate entangled qubits with 0.945 ± 0.002 fidelity by preparing the control photon in a superposition state. Our results highlight a new application for QWs that use a compact multi-mode interaction region to realize large multi-component quantum circuits.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationDevelopment of a waveguide-based interferometer for the measurement of trace substances(Zenodo, 07.11.2023) Weingartner, Ernest; Bilal, Jonas; Steigmeier, Peter; Jundt, Gregor; Häusler, Samuel; Lenner, Miklós; Flöry, Nikolaus; Bittner, Matthias; Betschon, FelixPhotonic integration on a chip has the potential to develop new low-cost, high-performance sensing devices. A proof of concept of the sensing capabilities of a waveguide-based photothermal interferometer for the measurement of traces of light-absorbing substances (soot particles, gases) has been achieved. The measurement principle can also be extended to a wide range of other applications such as refractive index measurements, or vibration/distance sensors. A unique feature is that the waveguide technology allows for a passive operation of the interferometer, i.e., no quadrature point control is required.04B - Beitrag Konferenzschrift
- PublikationWaveguide based passively demodulated photothermal interferometer for light absorption measurements of trace substances(Optica Publishing Group, 2023) Visser, Bradley; Bilal, Jonas; Flöry, Nikolaus; Wipf, Manuela; Steigmeier, Peter; Rüggeberg, Tobias; Betschon, Felix; Weingartner, Ernest [in: Applied Optics]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMeasurement methods for RWB Emissions: what should be considered for a future standard?(09.11.2022) Keller, Alejandro06 - Präsentation
- PublikationThe organic coating unit, an all-in-one system for reproducible generation of secondary organic aerosol(06.09.2022) Keller, Alejandro; Kalbermatter, Daniel; Specht, Patrick; Steigmeier, Peter; Wolfer, Katherin; Resch, Julian; Kalberer, Markus; Hammer, Tobias; Vasilatou, Konstantina06 - Präsentation
- PublikationThe organic coating unit, an all-in-one system for reproducible generation of secondary organic matter aerosol(Taylor & Francis, 18.08.2022) Keller, Alejandro; Kalbermatter, Daniel M.; Wolfer, Kate; Specht, Patrick; Steigmeier, Peter; Resch, Julian; Kalberer, Markus; Hammer, Tobias; Vasilatou, Konstantina [in: Aerosol Science and Technology]We report on a novel automated oxidation flow reactor to generate a wide variety of organic aerosol samples. The instrument is equipped with a humidifier, a dosing system for volatile organic precursors and an oxidation flow reactor (OFR) for generation of secondary organic matter (SOM). The instrument, known as organic coating unit (OCU), can produce homogeneously nucleated SOM particles or, used in combination with a standard combustion generator (e.g., a diffusion flame soot generator or any other seed particle), particles coated with a controlled amount of SOM. The physical and chemical properties of the generated particles can be controlled in a simple manner by selecting through a touch-screen target values for parameters, such as organic gaseous precursor concentration, humidity, and UV (ultraviolet) light intensity. Parameters and measured quantities are automatically stored in text files for easy export and analysis. Furthermore, we provide stable operation conditions and characterize the physicochemical properties of the generated aerosols with an array of methods, including transmission electron microscopy (TEM), thermal-optical analysis and liquid chromatography coupled with mass spectrometry (LC-MS). This all-in-one instrument is robust, compact, portable, and user-friendly, making it ideal for laboratory or field-based aerosol studies.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationResponses of reconstituted human bronchial epithelia from normal and health-compromised donors to non-volatile particulate matter emissions from an aircraft turbofan engine(Elsevier, 15.08.2022) Delaval, Mathilde N.; Jonsdottir, Hulda R.; Leni, Zaira; Keller, Alejandro; Brem, Benjamin T.; Siegerist, Frithjof; Schönenberger, David; Durdina, Lukas; Elser, Miriam; Salathe, Matthias; Baumlin, Nathalie; Lobo, Prem; Burtscher, Heinz; Liati, Anthi; Geiser, Marianne [in: Environmental Pollution]Health effects of particulate matter (PM) from aircraft engines have not been adequately studied since controlled laboratory studies reflecting realistic conditions regarding aerosols, target tissue, particle exposure and deposited particle dose are logistically challenging. Due to the important contributions of aircraft engine emissions to air pollution, we employed a unique experimental setup to deposit exhaust particles directly from an aircraft engine onto reconstituted human bronchial epithelia (HBE) at air-liquid interface under conditions similar to in vivo airways to mimic realistic human exposure. The toxicity of non-volatile PM (nvPM) from a CFM56-7B26 aircraft engine was evaluated under realistic engine conditions by sampling and exposing HBE derived from donors of normal and compromised health status to exhaust for 1 h followed by biomarker analysis 24 h post exposure. Particle deposition varied depending on the engine thrust levels with 85% thrust producing the highest nvPM mass and number emissions with estimated surface deposition of 3.17 × 109 particles cm−2 or 337.1 ng cm−2. Transient increase in cytotoxicity was observed after exposure to nvPM in epithelia derived from a normal donor as well as a decrease in the secretion of interleukin 6 and monocyte chemotactic protein 1. Non-replicated multiple exposures of epithelia derived from a normal donor to nvPM primarily led to a pro-inflammatory response, while both cytotoxicity and oxidative stress induction remained unaffected. This raises concerns for the long-term implications of aircraft nvPM for human pulmonary health, especially in occupational settings.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationFirst demonstration of a post-quantum key-exchange with a nanosatellite(08/2022) Burkhardt, Simon Martin; Meier, Willi; Wildfeuer, Christoph; Reezwana, Ayesha; Islam, Tanvirul; Ling, Alexander [in: Proceedings of the Small Satellite Conference]We demonstrate a post-quantum key-exchange with the nanosatellite SpooQy-1 in low Earth orbit using Kyber-512, a lattice-based key-encapsulation mechanism and a round three finalist in the NIST PQC standardization process. Our firmware solution runs on an on-board computer that is based on the Atmel AVR32 RISC microcontroller, a widely used platform for nanosatellites. We uploaded the new firmware with a 436.2 MHz UHF link using the CubeSat Space Protocol (CSP) and performed the steps of the key exchange in several passes over Switzerland. The shared secret key generated in this experiment could potentially be used to encrypt RF links with AES-256. This implementation demonstrates the feasibility of a quantum-safe authenticated key-exchange and encryption system on SWaP constrained nanosatellites.04B - Beitrag Konferenzschrift
- PublikationThe organic coating unit, an all-in-one system for reproducible generation of secondary organic aerosol(22.06.2022) Keller, Alejandro; Specht, Patrick; Steigmeier, Peter; Kalbermatter, Daniel; Hammer, Tobias; Vasilatou, Konstantina; Wolfer, Kate; Resch, Julian; Kalberer, Markus06 - Präsentation
- PublikationInterdisziplinäre Perspektiven zur Bedeutung der Aerosolübertragung für das Infektionsgeschehen von SARS-CoV-2(Thieme, 2022) Held, Andreas; Dellweg, Dominic; Köhler, Dieter; Pfaender, Stephanie; Scheuch, Gerhard; Schumacher, Stefan; Steinmann, Eike; Weingartner, Ernest; Weinzierl, Bernadett; Asbach, Christof [in: Das Gesundheitswesen]Die Bedeutung der Aerosolübertragung für das Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) wurde anfangs kontrovers diskutiert. Mit der Zeit haben sich zur Infektionsminderung jedoch neben Abstands- und Hygieneregeln auch aerosolphysikalisch begründete Maßnahmen wie das Tragen von Gesichtsmasken und Lüftung von Innenräumen als effektiv erwiesen. In einem interdisziplinären Workshop „Aerosol & SARS-CoV-2“ der Gesellschaft für Aerosolforschung (GAeF) in Kooperation mit der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), dem Fachverband Allgemeine Lufttechnik im VDMA, der Gesellschaft für Virologie (GfV), der Gesundheitstechnischen Gesellschaft (GG) und der International Society for Aerosols in Medicine (ISAM) unter der Schirmherrschaft des Robert-Koch-Instituts (RKI) im März 2021 wurde der Forschungs- und Abstimmungsbedarf zu diesem Thema aufgegriffen. Wesentliche Grundlagen aus den verschiedenen Disziplinen sowie interdisziplinäre Perspektiven zur Aerosolübertragung von SARS-CoV-2 und zu infektionsmindernden Maßnahmen werden hier zusammengefasst. Abschließend werden offene Forschungsfragen und dringender Forschungsbedarf dargestellt.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationSingle aerosol particle detection by acoustic impaction(IEEE, 2022) Karlen, Nadine; Rüggeberg, Tobias; Visser, Bradley; Hoffmann, Jana; Weiss, Daniel; Weingartner, Ernest [in: IEEE Sensors Journal]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationA dual-wavelength photothermal aerosol absorption monitor. Design, calibration and performance(Copernicus, 2022) Drinovec, Luka; Jagodič, Uroš; Pirker, Luka; Škarabot, Miha; Kurtjak, Mario; Vidović, Kristijan; Ferrero, Luca; Visser, Bradley; Röhrbein, Jannis; Weingartner, Ernest; Kalbermatter, Daniel M.; Vasilatou, Konstantina; Bühlmann, Tobias; Pascale, Celine; Müller, Thomas; Wiedensohler, Alfred; Močnik, Griša [in: Atmospheric Measurement Techniques]There exists a lack of aerosol absorption measurement techniques with low uncertainties and without artefacts. We have developed the two-wavelength Photothermal Aerosol Absorption Monitor (PTAAM-2λ), which measures the aerosol absorption coefficient at 532 and 1064 nm. Here we describe its design, calibration and mode of operation and evaluate its applicability, limits and uncertainties. The 532 nm channel was calibrated with ∼ 1 µmol mol−1 NO2, whereas the 1064 nm channel was calibrated using measured size distribution spectra of nigrosin particles and a Mie calculation. Since the aerosolized nigrosin used for calibration was dry, we determined the imaginary part of the refractive index of nigrosin from the absorbance measurements on solid thin film samples. The obtained refractive index differed considerably from the one determined using aqueous nigrosin solution. PTAAM-2λ has no scattering artefact and features very low uncertainties: 4 % and 6 % for the absorption coefficient at 532 and 1064 nm, respectively, and 9 % for the absorption Ångström exponent. The artefact-free nature of the measurement method allowed us to investigate the artefacts of filter photometers. Both the Aethalometer AE33 and CLAP suffer from cross sensitivity to scattering – this scattering artefact is most pronounced for particles smaller than 70 nm. We observed a strong dependence of the filter multiple scattering parameter on the particle size in the 100–500 nm range. The results from the winter ambient campaign in Ljubljana showed similar multiple scattering parameter values for ambient aerosols and laboratory experiments. The spectral dependence of this parameter resulted in AE33 reporting the absorption Ångström exponent for different soot samples with values biased 0.23–0.35 higher than the PTAAM-2λ measurement. Photothermal interferometry is a promising method for reference aerosol absorption measurements.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationComparing black carbon and aerosol absorption measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter(Copernicus, 2022) Kalbermatter, Daniel M.; Močnik, Griša; Drinovec, Luka; Visser, Bradley; Röhrbein, Jannis; Oscity, Matthias; Weingartner, Ernest; Hyvärinen, Antti-Pekka; Vasilatou, Konstantina [in: Atmospheric Measurement Techniques]We report on an inter-comparison of black-carbon- and aerosol-absorption-measuring instruments with laboratory-generated soot particles coated with controlled amounts of secondary organic matter (SOM). The aerosol generation setup consisted of a miniCAST 5201 Type BC burner for the generation of soot particles and a new automated oxidation flow reactor based on the micro smog chamber (MSC) for the generation of SOM from the ozonolysis of α-pinene. A series of test aerosols was generated with elemental to total carbon (EC / TC) mass fraction ranging from about 90 % down to 10 % and single-scattering albedo (SSA at 637 nm) from almost 0 to about 0.7. A dual-spot Aethalometer AE33, a photoacoustic extinctiometer (PAX, 870 nm), a multi-angle absorption photometer (MAAP), a prototype photoacoustic instrument, and two prototype photo-thermal interferometers (PTAAM-2λ and MSPTI) were exposed to the test aerosols in parallel. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. We believe that the setup and methodology described in this study can easily be standardised and provide a straightforward and reproducible procedure for the inter-comparison and characterisation of both filter-based and in situ black-carbon-measuring (BC-measuring) instruments based on realistic test aerosols.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationEmployment of novel tools for the continuous characterization of the carbonaceous fraction in ambient aerosol(13.09.2021) Keller, Alejandro; Specht, Patrick; Steigmeier, Peter; Weingartner, Ernest06 - Präsentation
- PublikationPerformance of the new continuous carbonaceous aerosol measurement system FATCAT during long term unattended measurement campaigns(23.06.2021) Keller, Alejandro; Specht, Patrick; Steigmeier, Peter; Weingartner, Ernest06 - Präsentation
- PublikationCoated soot particles with tunable, well-controlled properties generated in the laboratory with a miniCAST BC and a micro smog chamber(Elsevier, 28.05.2021) Ess, Michaela N.; Bertò, Michele; Keller, Alejandro; Gysel, Martin; Vasilatou, Konstantina [in: Journal of Aerosol Science]A Micro Smog Chamber (MSC) was coupled for the first time with a miniCAST 5201 Type BC combustion generator with the aim to produce a series of stable and reproducible model aerosols simulating the physical properties of combustion particles present in ambient air. With this setup it was possible to generate particles ranging from “fresh” soot (single scattering albedo SSA≤0.05, absorption Ångström exponent AAE close to 1, high EC/TC mass fraction (approximately 90%) and mobility diameter typically <100 nm) to “aged” soot with different amounts of organic coating. The “aged” soot particles could grow up to 200 nm and exhibited high SSA (up to 0.7 at λ = 870 nm), an increased AAE (up to 1.7) and low EC/TC mass fraction (down to <10%). The ageing was achieved by coating the soot particles with increasing amounts of secondary organic matter (SOM) formed by the photo-oxidation of α-pinene or mesitylene in the MSC. Thereby, the SSA and AAE increased with coating thickness, while the EC/TC mass fraction decreased. Over the experimental period of 2 h, the generation of the “aged” soot aerosols was stable with a standard deviation in particle size and number concentration of <1% and <6%, respectively. The day-to-day reproducibility was also satisfactory: with α-pinene as SOM precursor the variability (standard deviation) in particle size was <2% and in the AAE and SSA < 6%. Particle number concentrations up to 106 cm−3 and mass concentrations up to 15 mg/m3 (depending on particle size and SOM amount) could be generated, much higher than what has been reported with other oxidation flow reactors. The generated carbonaceous aerosols could find useful applications in the field of aerosol instrument calibration, particularly in the standardization of filter-based absorption photometers under controlled conditions.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationHigh resolution unattended particle-bound total carbon measurements and source identification at the Jungfraujoch global GAW station(18.05.2021) Keller, Alejandro; Specht, Patrick; Steigmeier, Peter; Weingartner, ErnestTotal aerosol carbonaceous mass (TC) is a major constituent of atmospheric fine aerosol not yet continuously monitored with adequate time resolution. Adding a TC measurement to existing measurement programs is crucial for comprehensive interpretation of the impact of aerosols. To fill this gap, we developed the “fast thermal carbon totalizator” (FATCAT) for long-term unsupervised monitoring of TC. FATCAT has been deployed since 2019 at diverse sites including the Jungfraujoch global GAW station (JFJ). FATCAT collects particles on a metallic filter, and subsequently heats it to 800°C under an oxidizing atmosphere. The limit of detection is LoD=0.2 µg of carbon (µg-C). At the reduced atmospheric pressure of the JFJ, which limits the sampling flow, this corresponds to TC=0.3 µg-C/m3 using a time resolution of two hours. We discuss our experience during the first two year of continuous TC measurements and the possibility of using our instrument to distinguish carbonaceous aerosol from different source using fast, 50 seconds, thermograms. This unique feature allows us to identify source specific fingerprints. Several high TC episodes during September 2020 at JFJ show the typical pattern for biomass combustion. Back trajectories attribute them to long-range transported emissions from Californian wildfires. Graphitic carbon from, e.g., local fossil fuel combustion evolves at higher temperatures. The data collected at the JFJ is already the longest produced TC dataset for this site without instrument related interruptions. The dataset generated by our instrument and post-analysis data products represent an improvement to the available measurement inventory. It can serve as quality control for other measurement systems. Prominently, measurements of eBC via MAAP or Aethalometer and organic mass using ToF-ACSM. TC data can be used in parallel to these devices as a quality check, and to warrant carbon mass closure and reduce systematic biases.06 - Präsentation
- PublikationA global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties(Copernicus, 2021) Titos, Gloria; Burgos, María A.; Zieger, Paul; Alados-Arboledas, Lucas; Baltensperger, Urs; Jefferson, Anne; Sherman, James; Weingartner, Ernest; Henzing, Bas; Luoma, Krista; O'Dowd, Colin; Wiedensohler, Alfred; Andrews, Elisabeth [in: Atmospheric Chemistry and Physics]The scattering and backscattering enhancement factors (f(RH) and fb(RH)) describe how aerosol particle light scattering and backscattering, respectively, change with relative humidity (RH). They are important parameters in estimating direct aerosol radiative forcing (DARF). In this study we use the dataset presented in Burgos et al. (2019) that compiles f(RH) and fb(RH) measurements at three wavelengths (i.e., 450, 550 and 700 nm) performed with tandem nephelometer systems at multiple sites around the world. We present an overview of f(RH) and fb(RH) based on both long-term and campaign observations from 23 sites representing a range of aerosol types. The scattering enhancement shows a strong variability from site to site, with no clear pattern with respect to the total scattering coefficient. In general, higher f(RH) is observed at Arctic and marine sites, while lower values are found at urban and desert sites, although a consistent pattern as a function of site type is not observed. The backscattering enhancement fb(RH) is consistently lower than f(RH) at all sites, with the difference between f(RH) and fb(RH) increasing for aerosol with higher f(RH). This is consistent with Mie theory, which predicts higher enhancement of the light scattering in the forward than in the backward direction as the particle takes up water. Our results show that the scattering enhancement is higher for PM1 than PM10 at most sites, which is also supported by theory due to the change in scattering efficiency with the size parameter that relates particle size and the wavelength of incident light. At marine-influenced sites this difference is enhanced when coarse particles (likely sea salt) predominate. For most sites, f(RH) is observed to increase with increasing wavelength, except at sites with a known dust influence where the spectral dependence of f(RH) is found to be low or even exhibit the opposite pattern. The impact of RH on aerosol properties used to calculate radiative forcing (e.g., single-scattering albedo, ω0, and backscattered fraction, b) is evaluated. The single-scattering albedo generally increases with RH, while b decreases. The net effect of aerosol hygroscopicity on radiative forcing efficiency (RFE) is an increase in the absolute forcing effect (negative sign) by a factor of up to 4 at RH = 90 % compared to dry conditions (RH < 40 %). Because of the scarcity of scattering enhancement measurements, an attempt was made to use other more commonly available aerosol parameters (i.e., ω0 and scattering Ångström exponent, αsp) to parameterize f(RH). The majority of sites (75 %) showed a consistent trend with ω0 (higher f(RH = 85 %) for higher ω0), while no clear pattern was observed between f(RH = 85 %) and αsp. This suggests that aerosol ω0 is more promising than αsp as a surrogate for the scattering enhancement factor, although neither parameter is ideal. Nonetheless, the qualitative relationship observed between ω0 and f(RH) could serve as a constraint on global model simulations.01A - Beitrag in wissenschaftlicher Zeitschrift