Listen
2 Ergebnisse
Bereich: Suchergebnisse
Publikation Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM2.5, NO2) concentrations in the European EXPOLIS study(Elsevier, 2002) Rotko, Tuulia; Bayer-Oglesby, Lucy; Künzli, Nino; Carrer, Paolo; Nieuwenhuijsen, Mark J; Jantunen, MattiApart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25–55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM2.5 and NO2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM2.5 and NO2. A high correlation was observed between the personal 48-h PM2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM2.5 and the personal work time PM2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM2.5) and 19% (NO2) of the variation in perceived air pollution annoyance in traffic. Compared to Helsinki, in Basel and Prague the adult participants were more annoyed by air pollution while in traffic even after taking the current home outdoor PM2.5 and NO2 levels into account.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Exposure chain of urban air PM2.5—associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study(Elsevier, 2002) Kousa, Anu; Bayer-Oglesby, Lucy; Koistinen, Kimmo; Künzli, Nino; Jantunen, MattiIn the EXPOLIS study personal exposures and microenvironment levels of air pollutants from 50–201 urban adult (25–55 yr) participants were measured in six European cities during 1 yr from autumn 1996 to winter 1997–98. This paper presents the associations between the personal PM2.5 exposures, microenvironment (residential indoor, residential outdoor and workplace indoor) and ambient fixed site concentrations measured in Helsinki (Finland), Basel (Switzerland), Prague (Czech Republic) and Athens (Greece). Considering the whole chain from ambient fixed site to residential outdoor, residential indoor and personal leisure time (non-working hours) exposure, the correlations were highest between personal leisure time exposures and residential indoor concentrations (non-environmental tobacco smoke (ETS): Pearson r=0.72−0.92, ETS included: r=0.82−0.86) except in Athens, where the correlation between residential indoor and outdoor air was highest (non-ETS: r=0.82, ETS included: r=0.68)). Unfortunately, ambient fixed site PM2.5 concentrations were measured continuously only in Helsinki. Ambient fixed site PM2.5 concentrations correlated quite well with residential outdoor concentrations (r=0.90), and also with residential indoor (non-ETS) concentrations (r=0.80), but concentrations measured at ambient fixed site monitors were poor predictors of personal exposures to PM2.5. They were particularly poor predictors of personal workday exposures (non-ETS: r=0.34, ETS included: r=0.25), but considerably better for personal leisure time exposures (non-ETS: r=0.69, ETS included: r=0.54). According to log-linear regression models combined from all centres of non-ETS-exposed participants, residential indoor concentrations explained 76% of personal leisure time PM2.5 exposure variation and workplace indoor concentrations explained 66% of the workday exposure variation.01A - Beitrag in wissenschaftlicher Zeitschrift