Bruckmaier, Georg
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse
Die „Messung“ fachdidaktischen Wissens in der COACTIV-Studie
2023, Bruckmaier, Georg, Krauss, Stefan, Blum, Werner, Neubrand, Michael, Krauss, Stefan, Lindl, Alfred
Corona-Impfungen. Was 95% Wirksamkeit bedeuten – und was nicht
2022, Ollesch, Julia, Bruckmaier, Georg, Vogel, Markus, Krauss, Stefan
Inzidenzen, R-Wert, Anzahl von Hospitalisierungen, Corona-Ampel, Wirksamkeit der Impfstoffe – beim Thema COVID-19 wird mit Zahlen und Statistiken geradezu um sich geworfen. Doch was bedeuten all diese Zahlen im Detail? Die polarisierende Debatte um die Vorzüge, Wirksamkeiten und Nebenwirkungen von Impfstoffen zeigt deutlich, dass eine eindeutige Interpretation der Daten nicht immer ganz einfach ist. Dies zeigt sich nicht zuletzt darin, dass es einem Großteil der Bevölkerung schwerfällt, die Statistiken zur Wirksamkeit angemessen zu deuten. In diesem Artikel wollen wir Berechnungen zur Wirksamkeit der Impfstoffe gegen COVID-19 und die damit verbundenen Probleme bzw. Fehlinterpretationen genauer betrachten und diesbezügliche Anregungen für den Mathematikunterricht präsentieren.
Natürliche Häufigkeiten als numerische Darstellungsart von Anteilen und Unsicherheit – Forschungsdesiderate und einige Antworten
2020-01-28, Krauss, Stefan, Weber, Patrick, Binder, Karin, Bruckmaier, Georg
Das aus der Kognitionspsychologie stammende Konzept der sogenannten natürlichen Häufigkeiten wird seit etwa 20 Jahren auch in der Mathematikdidaktik diskutiert. Im vorliegenden Beitrag soll illustriert werden, dass trotz der mittlerweile enormen Fülle an empirischen Studien noch zahlreiche fachdidaktische Fragestellungen unbeantwortet sind. So ist die Ersetzung von Wahrscheinlichkeiten (wie z. B. „80 %“) durch zwei absolute Häufigkeiten in der Form von natürlichen Häufigkeiten (z. B. „4 von 5“) zwar als verständnisfördernd anerkannt, es ist aber noch unklar, wie genau sich natürliche Häufigkeiten definieren lassen, welche Eigenschaften entsprechende Verknüpfungen haben, aber auch, welche Grundvorstellungen für den verständnisfördernden Effekt verantwortlich sein könnten. Ein drängendes Desiderat ist darüber hinaus, dass natürliche Häufigkeiten bislang zwar im Zusammenhang mit Bayesianischen Aufgabenstellungen diskutiert werden (d. h. beim Thema Wahrscheinlichkeit), aber noch nicht im Hinblick auf ihr tatsächliches Vorkommen in der Welt (d. h., beim Thema Daten). Obschon aktuelle Strömungen in der Didaktik der Stochastik nahelegen, dass gerade eine Analyse der Darstellungsformate statistischer Informationen, denen wir in der Welt begegnen, überhaupt erst die Voraussetzung ist, um Schülerinnen und Schüler im Sinne einer statistical literacy adäquat auf eine reflektierte Teilnahme an unserer Informationsgesellschaft vorzubereiten, geschieht dies im Zusammenhang mit Daten bislang meist mit einem Fokus auf graphische Darstellungen. Im vorliegenden Artikel (a) analysieren wir numerische Darstellungen von Anteilen und Wahrscheinlichkeiten in Alltagskommunikation und Medien, (b) vergleichen diese mit entsprechenden Darstellungen im schulischen Stochastikunterricht und (c) machen konstruktive Vorschläge, wie die hierbei zu Tage tretende Diskrepanz zwischen (a) und (b) im Stochastikunterricht adressiert werden könnte. Der Schwerpunkt liegt dabei auf dem Konzept der natürlichen Häufigkeiten.
Prediction of elementary mathematics grades by cognitive abilities
2018, Hilbert, Sven, Bruckmaier, Georg, Binder, Karin, Krauss, Stefan, Bühner, Markus
In the present study, the relationship between the mathematics grade and the three basic cognitive abilities (inhibition, working memory, and reasoning) was analyzed regarding possible alterations during elementary school. In a sample of N = 244 children, the mathematics grade was best predicted by working memory performance in the second grade and by reasoning in the third and fourth grades. Differentiation of these abilities during elementary school was considered as a cause for this pattern but discarded after the analysis of structural equation models. Thus, with respect to output-orientated curricula, scholastic standards, and a large inter-individual heterogeneity of students, it is implied for teachers to account for different cognitive strengths and weaknesses of their students, using adequate tasks and teaching strategies like self-differentiating tasks and adaptive explorative learning.
Quantitative Forschungsmethoden
2023, Krauss, Stefan, Bruckmaier, Georg, Brunner, Martin, Bruder, Regina, Büchter, Andreas, Gasteiger, Hedwig, Schmidt-Thieme, Barbara, Weigand, Hans-Georg
How do self‐efficacy and self‐concept impact mathematical achievement? The case of mathematical modelling
2021-07-06, Holenstein, Mathias, Bruckmaier, Georg, Grob, Alexander
Background. According to the self-enhancement perspective, self-efficacy and self concept are shaped by prior achievement and have a crucial impact on future development. Their role in improving performance on challenging tasks, such as mathematical modelling (i.e., solving realistic problems mathematically), has barely been studied. Aims. We investigated patterns of self-efficacy and self-concept and their predictive effects on mathematical modelling while taking into account school grades as measure of prior achievement and reasoning to reveal cognitive and motivational effects on achievement. Sample. N = 279 secondary students in Grade 8 or 9 from 16 classes and 6 schools participated in the study. Method. The multi-informant design consisted of teachers’ reports of school grades, students’ reports of self-efficacy and self-concept (questionnaire-based), and assessment of students’ reasoning and mathematical modelling. Results. Using random-intercept models, we found that the predictive effect of self efficacy on mathematical modelling withstood taking the school-classroom-related nested structure into account, whereas self-concept lost its predictive value. Further, self efficacy fully mediated the effect of school grades on mathematical modelling. Conclusions. In line with the self-enhancement perspective on self-efficacy, our findings highlight the strength of motivational effects on mathematical modelling. When we take the nested structure into account, our results indicate an impact of school grades via self efficacy on mathematical modelling independent of students’ cognitive level or classroom. Given the diverse challenges such complex tasks present, important pedagogical and didactical recommendations, such as targeting the enhancement of students’ self-efficacy by teachers and educational decision makers, can be drawn.
Didaktische Kompetenzen von Mathematiklehrkräften. Weiterführende Analysen aus der COACTIV-Studie
2019, Bruckmaier, Georg
Eine Frage der Taktik. Fairness beim Spiel „Schere – Stein – Papier“
2022-02-08, Binder, Karin, Bruckmaier, Georg
Anhand des Spiels Schere – Stein – Papier lässt sich das Thema Fairness im Unterricht spielerisch behandeln, die zugehörigen mathematischen Zusammenhänge geeignet visualisieren und psychologische Aspekte des Spiels Spielstrategien) thematisieren. Wir werden hier, ausgehend von der Grundform des Spiels, drei Varianten betrachten: unterschiedlich viele Symbole für einzelne Spieler (Variante 1), zusätzliche Symbole (Variante 2) und unterschiedlich hoher Gewinn je Spielausgang (Variante 3).
Competence as a continuum in the COACTIV study: the “cascade model”
2020-04-11, Krauss, Stefan, Bruckmaier, Georg, Lindl, Alfred, Hilbert, Sven, Binder, Karin, Steib, Nicole, Blum, Werner
Two different tools for assessing pedagogical content knowledge (PCK) of mathematics teachers used in the framework of the COACTIV study are systematically compared in this paper, namely the paper-and-pencil test consisting of items on the three facets knowledge of explaining and representation, knowledge of student thinking and typical mistakes, and knowledge of the potential of mathematical tasks, and the video vignettes instrument that examines teachers’ proposed continuations for presented lesson video clips specific to their subject-related and methodological competence aspects. Initially, both COACTIV PCK assessment tools are systematically contrasted for the first time with respect to their predictive validity for instructional quality (N = 163 German secondary mathematics teachers) as well as student learning gains (N = 3806 PISA students from 169 different classes) by means of path models showing that PCK, when assessed by the paper-and-pencil method, can better predict instructional quality than the video vignettes instrument can. Next, we theoretically propose the cascade model as capable of integrating pertinent theories on teacher competence and instructional quality. This model implies five ‘columns’ that are ordered according to a sequential causal chain (teacher disposition → situation-specific skills → observable teaching behavior → student mediation → learning gains). Finally, we specify four out of the five ‘columns’ of this cascade model, based empirically on the COACTIV data.
Lösungsvorschläge zu Thema 17
2019, Bruckmaier, Georg, Löh, Clara, Kilibertus, Niki, Krauss, Stefan