Towards an assistive and pattern learning-driven process modeling approach

Typ
04B - Beitrag Konferenzschrift
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Palo Alto
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The practice of business process modeling not only requires modeling expertise but also significant domain expertise. Bringing the latter into an early stage of modeling contributes to design models that appropriately capture an underlying reality. For this, modeling experts and domain experts need to intensively cooperate, especially when the former are not experienced within the domain they are modeling. This results in a time-consuming and demanding engineering effort. To address this challenge, we propose a process modeling approach that assists domain experts in the creation and adaptation of process models. To get an appropriate assistance, the approach is driven by semantic patterns and learning. Semantic patterns are domain-specific and consist of process model fragments (or end-to-end process models), which are continuously learned from feedback from domain as well as process modeling experts. This enables to incorporate good practices of process modeling into the semantic patterns. To this end, both machine-learning and knowledge engineering techniques are employed, which allow the semantic patterns to adapt over time and thus to keep up with the evolution of process modeling in the different business domains.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Projekt
Veranstaltung
AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Diamond
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
LAURENZI, Emanuele, Knut HINKELMANN, Stephan JÜNGLING, Devid MONTECCHIARI, Charuta PANDE und Andreas MARTIN, 2019. Towards an assistive and pattern learning-driven process modeling approach. In: Andreas MARTIN, Knut HINKELMANN, Aurona GERBER, Doug LENAT, Frank VAN HARMELEN und Peter CLARK (Hrsg.), Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019). Palo Alto. 2019. Verfügbar unter: https://doi.org/10.26041/fhnw-6431